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THE WEIBULL GENERALIZED EXPONENTIATED WEIBULL
DISTRIBUTION: THEORY AND APPLICATIONS

M. S. HAMED

Abstract. In this work, a new extension of the exponentiated Weibull model
is introduced with its mathematical properties and applications to failure times
and medical data using the maximum likelihood method. We assess the per-
formance of the maximum likelihood estimators in terms of biases and mean
squared errors by means of a simulation study. We prove empirically the im-
portance and zexibility of the new model in modeling two types of lifetime data.
We conclude that, the new model is much better than the Weibull , expone-
tiated Weibull, beta Weibull, Kumaraswamy Weibull, Transmuted Weibull,
Weibull generalized Weibull and McDonald Weibul models in modeling failure
times and breast cancer data.

1. Introduction and motivation

A random variable (r.v.) Z is said to have the Exponentiated Weibull (EW)
distribution if its probability density function (pdf) and cumulative distribution
function (cdf) are given by
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respectively, for z > 0, � > 0 and � > 0, when � = 1 we get the the one parameter
Weibull distribution.

Let g(�)(EW )(x) and G
(�)
(EW )(x) denote the pdf and the cdf of the EW with parameter

vector � =(�; �). Then the cdf of the Weibull Generalized-EW (WGEW) based
on Yousof et al. (2018) is de�ned by
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the corresponding pdf to (1) is given by
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where  > 0 and � > 0 are two additional shape parameters. For � = 1 we have
the WGW distribution (see [13]). The additional parameters induced by the new
Weibull generator are sought as a manner to furnish a more �exible distribution. In
this paper, we study the WGEW model and give a comprehensive description of its
mathematical properties. The new model is motivated by its important �exibility
in applications. By means of two applications, it is noted that the WGEW model
provides better �ts than seven other models each having the same (or more) number
of parameters. The cdf of the WGEW model can be expressed as

F (x) = 1�
1X
k=0

dk �(1+k)�(x); (3)
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is the cdf of the EW with power parameter �. Upon di¤erentiating (3), we obtain
the same mixture representation for the pdf

f (x) =
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Equations (3) and (4) are the main results of this section.

According to [2], a physical interpretation of the WGEW distribution can be shown
as follows: soppose that we have a lifetime r.v., Z, having a certain continuous

EW distribution. The generalized ratio
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resented by the r.v. X and assume that it follows the Weibull model with shape
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. We can write Pr (Z � x) = Pr
 
X �

1�
n
1�
h
1�exp

�
�x

�
�i�o�

f1�[1�exp(�x� )]�g�

!
= F (x);which is

given by (1).

Figure 1: Plots of the WGEW pdf .
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Figure 2: Plots of the WGEW hrf .

From Figure 1 we conclude that the pdf of the WGEW distribution exhibits var-
ious important shapes like left skewed, symmetric, right skewed and bimodal, from
Figure 2 we conclude that the hrf WGEW distribution exhibits constant, increasing,
decreasing, unimodal then increasing, unimodal then bathtub and bathtub hazard
rates.

This paper is organized as follows. In Section 2, we derive some of mathemat-
ical properties for the new model. Maximum likelihood estimation for the model
parameters is addressed in Section 3. Section 4 introduces the simulation studies.
In Section 5, the potentiality of the proposed model is illustrated by means of two
real data sets. Finally, Section 4 ends with some conclusions.
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2. Properties

2.1. Main statistical properties. The rth ordinary moment of X is given by

�0r = E(X
r) =
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�1
xr f (x) dx;

then, we obtain (for any r > ��)
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The rth incomplete moment, say Ir (t), of X can be expressed from (4) as (for any
r > ��)
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where  (�; q) is the incomplete gamma function.
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where 1F1 [�; �; �] is a con�uent hypergeometric function. Setting r = 1; 2; 3 and 4 in
(6) we get (for any r > ��)
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2.2. Probability weighted moments. The (s; r)th probability weighted moments
(PWMs) of X following the WGEW model, say �s;r, is formally de�ned by

�s;r = E fXs F (X)rg =
Z 1
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xs F (x)r f (x) dx;

the (s; r)th PWM of X can be expressed as
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2.3. Order statistics. Let X(1); : : : ; X(n) be a random sample (r.s.) from the
WGEW model of distributions and let X1:n; : : : ; Xn:nbe the corresponding order
statistics. The pdf of ith order statistic, say Xi:n, can be written as

fi:n (x) = B
�1 (i; n� i+ 1) f (x)

n�iX
j=0

(�1)j
�
n� i
j

�
F j+i�1 (x) ; (7)
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where B(�; �) is the beta function. Substituting (1) and (6) in equation (7) and
using a power series expansion, we get

f (x) F (x)j+i�1 =
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and the pdf of Xi:n can be expressed as
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i.e, the density function of the WGEW order statistic is a mixture of EW density.
Based on the last equation, we note that the properties of Xi:n follow from those
of Y1+k. For example, the moments of Xi:n can be expressed as. Then we have
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2.4. Moments of residual life and reversed residual life. The nth moment
of the residual life, say
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;

The nth moment of the residual life of X is given by
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Then, the nth moment of the reversed residual life of X becomes
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3. Maximum likelihood estimation

Let x1; : : : ; xn be a r.s. from the WGEW distribution with parameters �,,� and
�: For determining the MLE of �, we have the log-likelihood function
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The components of the score vector
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are easily to be obtained.
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4. Simulation studies

We used computer software R Core for the simulation study. For each com-
bination of speci�c parameter values, we simulated the sample data. MLEs are
computed based on this data using R function optimx (see [5]). To maximize
(9), we used [10] method as it provides more robust results than other methods.
Finally, standard errors (SE) of the estimates are obtained from the Hessian ma-
trix provided by optimx. We use the inversion method to simulate the WGEW
(� = 0:5; 2; � = 2; 0:5;  = 1; � = 1:5) model by taking n=50, 150 and 300. For
each sample size, we evaluate the MLEs of the parameters using the optim func-
tion of the R software. Then, we repeat this process 1,000 times and compute
the averages of the estimates (AEs), biases and mean squared errors (MSEs). The
simulation results are reported in Table 1. The �gures in Table1 indicate that the
MSEs and the biases of b�, b�, b and b� decay toward zero when the n increases for
all settings of � and �, as expected under �rst-under asymptotic theory. The AEs
of the parameters tend to be closer to the true parameter values when n increases.
This fact supports that the asymptotic normal distribution provides an adequate
approximation to the �nite sample distribution of the MLEs. Table 1 gives the
AEs, biases and MSEs based on 1000 simulations of the WGEW distribution for
some values of � and � when  = 1 and � = 1:5 by taking n = 50; 150 and 300.
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Table 1: The AEs, biases and MSEs based on 1000 simulations.
� = 0:5, � = 2 � = 2:0, � = 0:5

n � AE Bias MSE � AE Bias MSE
50 � 0.4688 0.0303 0.3314 � 2.0233 0.0281 0.4944

� 2.1332 0.0733 0.2832 � 0.5041 0.0161 0.0853

 1.0232 0.4343 0.2911  1.0444 0.1973 0.2443

� 1.7236 0.3345 0.2578 � 1.6762 0.2940 0.2974

150 � 0.4711 0.0194 0.2309 � 2.0212 0.0292 0.2248

� 2.0685 0.0602 0.1733 � 0.5045 0.0070 0.0271

 1.0353 0.2467 0.0448  1.0215 0.1209 0.1202

� 1.5055 0.1266 0.1132 � 1.5033 0.1634 0.0943

300 � 0.4912 0.0128 0.0044 � 2.0051 0.0240 0.0810

� 2.0025 0.0382 0.0591 � 0.5022 0.0029 0.0221

 0.9934 0.0149 0.0411  1.0035 0.0135 0.0145

� 1.5033 0.0768 0.0534 � 1.5069 0.0811 0.0139

5. Real data applications

In this section, we provide two applications to real data to illustrate the impor-
tance of the WGEW model presented in Section 1. The MLEs of the parameters for
these models are calculated and two goodness-of-�t statistics are used to compare
the new model with other models. We compared the �ts of the WGEW distribu-
tion with some of its special cases and other models such as Weibull (W) (see [12]),
exponetiated Weibull (EW) (see [7]) and [8]), beta Weibull (BW) (see [6]), Ku-
maraswamy Weibull (KwW) (see [4]), Transmuted Weibull (TW) (see [1]), WGW
(see [13]) and McDonald Weibull (McW) (see [3]) distributions given by:

� WG-W :

f(x; ; �; �) = ��x��1e�(�+2)x
�
h
1� e��x

�
i�1

exp

(
�
"
1� e��x�

e��x�

#)
;

� W :
f(x) = �x��1e�x

�

;

� BW :

f(x) = �x��1e�x
�
�
1� e�x

�
���1

=B(�; );
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� KwW :

f(x) = ��x��1e�x
�
�
1� e�x

�
���1�

1�
�
1� e�x

�
����1

;

� TW :
f(x) = �x��1e��x

�
h
1 + �� 2�

�
1� e�x

�
�i
;

� McW :

f(x) = �x��1e�ax
�
�
1� e�x

�
���1�

1�
�
1� e�x

�
��a�1

=B(�; a):

The �rst data set consists of failure times for a particular windshield model
including 88 observations that are classi�ed as failed times of windshields.
These data were previously studied by [9]. The second real data set repre-
sents the survival times of 121 patients with breast cancer obtained from
a large hospital in a period from 1929 to 1938 (see [6]). The data was ex-
amined by [11]. In order to compare the �tted models, we consider some
goodness-of-�t measures including the Akaike information criterion (AIC)
and Bayesian information criterion (BIC) as

AIC = �2^̀+ 2p and BIC = �2^̀+ p log (n) ;
where p is the number of parameters, n is the sample size and ^̀ is the log-
likelihood function evaluated at the MLEs. The smaller are values of these
statistics, the better are the �ts.Tables 2 and 3 list the MLEs of the models
parameters and the numerical values of the model selection statistics AIC
and BIC and K-S. We note from the �gures in Table 2 that the WGEW
model has the lowest values of the AIC and BIC (for the �rst data set)
as compared to other models. The �tted PDF, CDF, HRF and P-P plots
for the 1st data of the WGEW model is displayed in Figure 3. Similarly,
it is also evident from Table 3 that the WGEW gives the lowest values
the AIC, BIC (for the second data set) as compared to other models,
The �tted PDF, CDF, HRF and P-P plot for the 2nd data of the WGEW
distribution is displayed in Figure 4.

Table 2: The MLEs and the goodness-of-�t statistics for the �rst data set.
Distribution Parameter Estimates AIC BIC
W(�) 2.562 331.9 334.4

EW(�;�) 3.595,1.316 286.7 291.6

BW(�;�;) 1464.1, 3.52, 2014.8 282.7 290.1

KwW(�;�;) 80.66, 2.41, 3351.1 268.9 276.2

TW(�;�) 1.749, -0.996 297.6 302.5

McW(;a;�;�) 27.80, 8.68, 0.256, 3.73 269.2 279.0

WGW(�;;�) 1.68, 1.79, 7.12 264.1 271.4

WGEW(�;;�;�) 6.32, 0.13, 0.7, 0.033 261.76 271.3
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Figure 3: The �tted PDF, CDF, HRF and P-P plot for the �rst data set.
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Table 3: The MLEs and the goodness-of-�t statistics for the second data set.
Distribution Parameter Estimates AIC BIC
W(�) 46.35 1172.2 1175.1

EW(�;�) 36.03, 1.515 1166.1 1173.7

BW(�;�;) 12635.4, 1.492, 406.1 1165.6 1173.9

McW(;a;�;�) 9.05, 2.28, 0.508, 169.4 1166.0 1177.2

WGW(�;;�) 0.126, 0.957,10.06 1165.5 1172.8

WGEW(�;;�;�) 5.4, 1.015, 0.09, 2.049 838.254 849.662

Figure 4: The �tted PDF, CDF, HRF and P-P plot for the second data set.
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6. Conclusions

In this paper, a new extension of the exponentiated Weibull model is introduced
with its mathematical properties and applications to failure times and medical data
using the maximum likelihood method. We assess the performance of the maximum
likelihood estimators in terms of biases and mean squared errors by means of a
simulation study. We prove empirically the importance and �exibility of the new
model in modeling two types of lifetime data. We note from the �gures in Tables
1 and 2 that the new model has the lowest values of the AIC and BIC (for the
�rst data set). Similarly, it is also evident from Table 2 that the WGEW gives
the lowest values the AIC, BIC (for the second data set) as compared to other
models. The new model is much better than the Weibull , exponetiated Weibull,
beta Weibull, Kumaraswamy Weibull, Transmuted Weibull, Weibull generalized
Weibull and McDonald Weibul models in modeling failure times and breast cancer
data.
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